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Abstract: Dinosaurs were ubiquitous in terrestrial ecosys-

tems through most of the Mesozoic and are still diversely

represented in the modern fauna in the form of birds.

Recent efforts to better understand the origins of the

group have resulted in the discovery of many new species

of early dinosaur and their closest relatives (dinosauro-

morphs). In addition, recent re-examinations of early

dinosaur phylogeny have highlighted uncertainties regard-

ing the interrelationships of the main dinosaur lineages

(Sauropodomorpha, Theropoda and Ornithischia), and

questioned the traditional hypothesis that the group origi-

nated in South Gondwana and gradually dispersed over

Pangaea. Here, we use an historical approach to examine

the impact of new fossil discoveries and changing phylo-

genetic hypotheses on biogeographical scenarios for

dinosaur origins over 20 years of research time, and anal-

yse the results in the light of different fossil record sam-

pling regimes. Our results consistently optimize South

Gondwana as the ancestral area for Dinosauria, as well as

for more inclusive clades including Dinosauromorpha, and

show that this hypothesis is robust to increased taxonomic

and geographic sampling and divergent phylogenetic

results. Our results do not find any support for the

recently proposed Laurasian origin of dinosaurs and sug-

gest that a southern Gondwanan origin is by far the most

plausible given our current knowledge of the diversity of

early dinosaurs and non-dinosaurian dinosauromorphs.

Key words: Dinosauria, sampling, biogeography, BIOGEO-

BEARS, Triassic, Gondwana.

DINOSAURS dominated Mesozoic terrestrial ecosystems

for more than 140 million years, and remain highly

diverse today, in the form of birds. As such, dinosaurs

represent an outstanding example of evolutionary success

among terrestrial tetrapods, which is reflected by the

broad scientific interest in the group. Recently, there has

been intense debate over the origins, early evolutionary

radiation, and rise to ecological dominance of the group,

stimulated by new discoveries of early dinosaurs and clo-

sely related taxa (Irmis et al. 2007; Nesbitt et al. 2009,

2010, 2013, 2017; Cabreira et al. 2011, 2016; Mart�ınez

et al. 2011), novel quantitative macroevolutionary analy-

ses (Brusatte et al. 2008a, b; Sookias et al. 2012; Benton

et al. 2014) and new geological data (Whiteside et al.

2015; Marsicano et al. 2016; Bernardi et al. 2018; Langer

et al. 2018).

The discovery of many of the earliest known fossils of

dinosaurs and their close relatives, non-dinosaurian

dinosauromorphs, in South America and other southern

portions of the supercontinent Pangaea has led to the

hypothesis that dinosaurs originated in this region (Nes-

bitt et al. 2009; Brusatte et al. 2010; Langer et al. 2010).

However, a recent high-profile reassessment of the early

dinosaur evolutionary tree (Baron et al. 2017a) not only

challenged the long-standing classification of the three

main dinosaur lineages (Seeley 1887; Gauthier 1986) but

also questioned the southern Gondwanan origin of the

clade. Based solely on the observed palaeogeographical

distribution of some of the closest relatives of Dinosauria

in their phylogenetic hypothesis (i.e. the Late Triassic Sal-

topus elginensis and the Middle–Late Triassic Silesauridae,

which were recovered in a polytomy with Dinosauria),

Baron et al. (2017a, b) proposed that dinosaurs may have

originated in the northern part of Pangaea, referred to as

Laurasia. However, this was suggested in the absence of

any formal biogeographical analysis. Langer et al. (2017)
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tested this hypothesis by running several quantitative bio-

geographical analyses to reconstruct ancestral areas, the

results of which consistently recovered a southern Pan-

gaean (or Gondwanan) origin for dinosaurs. However,

they only conducted these analyses for the Baron et al.

(2017a) topology and did not consider alternative phylo-

genetic scenarios (Cabreira et al. 2016), or the long-term

robustness of these results to new fossil discoveries.

In this paper we aim to: (1) further test hypotheses

about the ancestral distribution of dinosaurs using a

broader range of quantitative biogeographical models and

alternative phylogenetic hypotheses; (2) test the stability

of the biogeographical results over 20 years of additional

scientific discoveries and new research that have dramati-

cally changed our understanding of early dinosaur evolu-

tion; and (3) discuss how biased palaeogeographical

sampling of the fossil record might impact our scenarios

for dinosaur origins.

MATERIAL AND METHOD

Source trees and time scaling

We sampled trees from six independent phylogenetic

analyses from the last 20 years, each of which dealt with

the major diversity of early dinosauromorphs at the time

they were published: (1) Sereno (1999); (2) Langer &

Benton (2006); (3) Nesbitt et al. (2009); (4) Cabreira

et al. (2016); (5) Baron et al. (2017a); and (6) Langer

et al. (2017) (Fig. 1). For the Baron et al. (2017a) dataset,

we created three alternative topologies to explore the

impact of the uncertain relationships between Saltopus,

Silesauridae and Dinosauria found by that study. The

three topologies differ in the following arrangements: A,

Saltopus sister to Silesauridae + Dinosauria; B, Saltopus

sister to Silesauridae; and C, Saltopus sister to Dinosauria.

We pruned Cretaceous taxa from the chosen topologies,

as their biogeographical range is beyond the scope of our

study. Supraspecific taxa were replaced by specific repre-

sentatives of the same clade in order to generate a more

explicit geographical distribution of terminal nodes. For

example, in the topology of Sereno (1999) we replaced

Diplodocidae with Diplodocus.

Since the biogeographical methods employed here

require fully-solved, time-calibrated topologies, we

resolved all polytomies in the sampled trees according to

the following procedure. For hypotheses resulting from

many most parsimonious trees (MPTs; Langer et al.

2017), we first obtained a majority-rule consensus tree

(cut-off = 50). The remaining polytomies were manually

resolved using a standardized procedure suggested by pre-

vious studies (Upchurch et al. 2015; Ferreira et al. 2018).

First, wherever possible we resolved polytomies to

minimize biogeographical changes. For example, in a

polytomy (A, B, C) where A and B share the same range,

but C has a different range, we resolved A + B as sister-

taxa to the exclusion of C. We further resolved

polytomies based on relationships recovered in previous

analyses. Finally, if polytomies remained, we chose the

arrangement by randomly selecting one of the possible

MPTs of that analysis. The dichotomous trees were then

time-scaled using the R package strap (Bell & Lloyd,

2014), with branch lengths equally divided (Brusatte et al.

2008b) and a minimum branch length of 1 myr. Time

ranges were based on the oldest and earliest dates of the

stratigraphic stage (according to the International

Chronostratigraphic Chart v. 2017/02; Cohen et al. 2013)

in which a taxon occurs, the latter data being gathered

from the literature. For example, the first and last appear-

ances of all Carnian taxa were considered to be 237 and

227 Ma, respectively.

Biogeographical analyses

In order to investigate the influence of phylogenetic

uncertainty and sampling on ancestral distribution

estimates for dinosaurs we conducted a series of stratified

biogeographical analyses with the R package BioGeo-
BEARS (Matzke 2013) using the aforementioned phylo-

genetic trees. For each analysis, we ran two nested-models

(M0 and M1; see below) of the likelihood-based models

DEC (Dispersal-Extinction Cladogenesis; Ree 2005; Ree &

Smith 2008) and DIVALIKE (Dispersal-Vicariance Analy-

sis; Ronquist 1997). The DEC+J model was not explored

because of its conceptual problems (Ree & Sanmart�ın

2018). Even though BioGeoBEARS enables us to fit a

large number of additional models by changing the avail-

able parameters, for example the implemented likelihood

version of BayArea (Landis et al. 2013), we opted to

employ only the most commonly used biogeographical

models, DEC and DIVA, to reduce the total number of

analyses, since we are testing several sets of analyses based

on different phylogenetic hypotheses. Each taxon was

scored for four biogeographical provinces as defined by

Langer et al. (2014): South Gondwana (S), Equatorial Belt

(B), Euramerica (A), and Trans-Uralian domains (T). We

set a maximum range size of two areas. Even though our

analyses are temporally restricted to between the Middle

Triassic and Middle Jurassic, a period during which no

drastic palaeobiogeographical changes between the con-

sidered areas are supposed to have occurred, we con-

ducted time-stratified analyses dividing the trees into two

discrete periods: Middle Triassic to Norian (247.2–
208.6 Ma) and Rhaetian to Middle Jurassic (208.5 Ma to

the earliest tip of each tree). For each time stratum, a dis-

persal multiplier matrix was specified to model the
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arrangement between the defined areas. To compare the

effects of these assumptions, we followed the procedure

of Poropat et al. (2016) and conducted analyses with

‘harsh’ and ‘relaxed’ versions of the ‘starting’ dispersal

multiplier matrices (Marsola et al. 2018, appendix S1),

and also set the parameter w to be free in one of the

models (M1; for M0 w is set to 1) in order to infer opti-

mal dispersal multipliers during the analyses. It is impor-

tant to consider that distinct models (e.g. DEC and

DIVA) make specific assumptions about the biogeograph-

ical processes of range change. For that reason, the maxi-

mum-likelihood approach of BioGeoBEARS allowed us

to test and choose the best fit model (Matzke 2014),

using the likelihood-ratio test (LRT) and the weighted

Akaike information criterion (AICc).

RESULTS

With the sole exception of the ‘starting’ analysis of the

Langer & Benton (2006) tree, for which a joint distribu-

tion of South Gondwana and Euramerica was estimated

for the Dinosauria node, the best fit models (for LRT and

AICc test results see Marsola et al. 2018) obtained from

all our analyses support a strictly southern Gondwanan

origin for dinosaurs (Table 1). Changing the dispersal

multiplier matrices did not yield distinct estimates. Simi-

larly, our results yield high support for South Gondwana

as the ancestral area for other ornithodiran clades leading

to the Dinosauria node. Whereas all analyses of the Nes-

bitt et al. (2009) dataset and the ‘starting’ version of the

Langer & Benton (2006) dataset support a joint distribu-

tion of South Gondwana and Euramerica as the ancestral

area for Dinosauromorpha, the clades Dinosauromorpha

and Dinosauriformes are supported as originating in

South Gondwana in all other analyses, including those

datasets that have the most extensive sampling of non-

dinosaurian dinosauromorphs (Cabreira et al. 2016;

Baron et al. 2017a; Langer et al. 2017). South Gondwana

is also inferred as the ancestral area for the Silesauri-

dae + Dinosauria clade in all analyses in which this sis-

ter-group relationship is present (i.e. not in Sereno

(1999) or iteration C of the Baron et al. (2017a) dataset)

with the exception of the ‘harsh’ analysis of the Langer &

F IG . 1 . Three phylogenetic topologies of early dinosaurs, showing the increased taxonomic and phylogenetic sampling of taxa since

1999. A, Sereno (1999). B, Langer & Benton (2006). C, Langer et al. (2017). Names in blue represent Jurassic taxa. Names in green

represent taxa discovered from 1999 to 2009. Names in red represent taxa discovered from 2010 to 2017.
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Benton (2006) dataset. We note that the results for the

Langer & Benton (2006) tree may not be reliable due to

the low taxon sampling of the tree and the short branches

surrounding Dinosauria.

Our results do not therefore support the hypothesis of

a Laurasian origin for Dinosauria as proposed by Baron

et al. (2017a), regardless of which of their three alterna-

tive topologies (Baron et al. (2017a): trees A, B and C) is

employed. Although the problematic taxon Saltopus elgi-

nensis is known from Laurasia (Lossiemouth Sandstone

Formation of Scotland, generally considered to be late

Carnian in age, and almost certainly Late Triassic; Benton

& Walker 2011), it is phylogenetically nested among

South Gondwanan taxa in all alternative hypotheses and

occurs stratigraphically 10–15 million years later than the

main splitting events along the dinosauromorph lineage

leading up to the origin of dinosaurs. Likewise, although

Baron et al. (2017a) noted that the Laurasian Agnosphitys

cromhallensis was positioned as sister to other silesaurids

in their results, this taxon is known from the Rhaetian

fissure fill deposits of southwest England, that is some

35–40 million years after the inferred origin of Silesauri-

dae. All known Middle Triassic non-dinosaurian

dinosauromorphs, as well as the only putative Middle

Triassic dinosaur (Nesbitt et al. 2013), are from South

Gondwana and only from the Carnian onwards does their

range expand into the northern hemisphere.

We conclude therefore, that the phylogenetic hypothe-

sis proposed by Baron et al. (2017a) does not provide

any significant support for a Laurasian origin of dino-

saurs (Fig. 2). Instead, all our results strongly support

those of Nesbitt et al. (2009) and Langer et al. (2017)

(Figs 2, 3), in which southern Gondwana (‘southern Pan-

gaea’ and ‘South America’, respectively, in their own

terms) was also recovered as the ancestral area for dino-

saurs. Furthermore, our analyses show that Ornithoscelida

and Saurischia would also have originated in southern

Gondwana in all possible versions of the Baron et al.

(2017a) phylogenetic hypothesis.

DISCUSSION

Historical patterns

Palaeontologists frequently use ancestral-area reconstruc-

tion approaches, such as those implemented by BioGeo-
BEARS, to infer ancestral ranges for clades and use these

to make inferences about evolutionary histories

(Upchurch et al. 2015; Poropat et al. 2016; Ferreira et al.

2018). However, they much more seldomly consider the

robustness of those results to new fossil discoveries, which

may include taxa from previously unsampled areas, and

changes in phylogenetic hypotheses, which occur through

the addition of more taxa and/or through changing

topologies that result from new datasets or analytical

approaches. For an ancestral range hypothesis to be con-

sidered well supported, it should be robust to such

changes in the source data.

Here, we have provided a unique historical perspective

on early dinosaur biogeography, by reconstructing ances-

tral areas for a series of alternative phylogenetic topolo-

gies taken from the last 20 years of research effort. Our

key result, a South Gondwana origin for dinosaurs, has

proved remarkably stable over two decades of new fossil

discoveries and extensive phylogenetic research. Since the

work of Sereno (1999), 23 new Triassic dinosaurs and

non-dinosaurian dinosauromorphs have been discovered

and/or added to phylogenetic studies. This includes new

taxa from North America (Irmis et al. 2007; Nesbitt et al.

2009; Sues et al. 2011), Europe (Fraser et al. 2002; Dzik,

2003; Benton & Walker 2011) and North Africa (Kam-

merer et al. 2012). Yet, this greatly increased sampling

has had few major impacts on models of early dinosaur

biogeography, as the southern Gondwanan origin for the

group is invariably supported as the best model through-

out the research interval considered. We recommend

using a similar historical perspective when estimating

TABLE 1 . Best fit models for each analysed tree.

Tree Distance

multiplier

Best

model

Ancestral Area

for Dinosauria

Sereno (1999) Starting DIVA M1 South Gondwana

Harsh DIVA M1 South Gondwana

Relaxed DIVA M1 South Gondwana

Langer &

Benton (2006)

Starting DEC M0 South Gondwana

& Euramerica

Harsh DEC M1 South Gondwana

Relaxed DEC M1 South Gondwana

Nesbitt

et al. (2009)

Starting DEC M0 South Gondwana

Harsh DEC M1 South Gondwana

Relaxed DEC M0 South Gondwana

Cabreira

et al. (2016)

Starting DIVA M0 South Gondwana

Harsh DIVA M1 South Gondwana

Relaxed DIVA M0 South Gondwana

Baron

et al. (2017a) A

Starting DIVA M1 South Gondwana

Harsh DIVA M1 South Gondwana

Relaxed DIVA M1 South Gondwana

Baron

et al. (2017a) B

Starting DIVA M1 South Gondwana

Harsh DIVA M1 South Gondwana

Relaxed DIVA M1 South Gondwana

Baron

et al. (2017a) C

Starting DIVA M0 South Gondwana

Harsh DIVA M1 South Gondwana

Relaxed DIVA M1 South Gondwana

Langer

et al. (2017)

Starting DIVA M1 South Gondwana

Harsh DIVA M1 South Gondwana

Relaxed DIVA M1 South Gondwana

All results are available in Marsola et al. (2018, appendix S1).
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ancestral distributions of other clades, as a way of exam-

ining the support for biogeographical hypotheses.

Our results are also consistent despite highly divergent

phylogenetic hypotheses for early dinosaurs. For exam-

ple, Cabreira et al. (2016) recovered the majority of sile-

saurids within Dinosauria, as a paraphyletic array of

early ornithischians. Baron et al. (2017a, b) proposed

the unconventional clade Ornithoscelida, with Ornithis-

chia as the sister-taxon of Theropoda, and herrerasaurids

nested with sauropodomorphs within Saurischia, whereas

Langer et al. (2017) reiterated support for a traditional

Ornithischia–Saurischia dichotomy at the base of Dino-

sauria. However, our results show that none of these

conflicting rearrangements of the three main dinosaurian

lineages (Sauropodomorpha, Theropoda, Ornithischia)

and Silesauridae challenge the long-standing biogeo-

graphical hypothesis of a southern Gondwanan origin

for dinosaurs.

Sampling biases

A biogeographical hypothesis, such as the southern Gond-

wanan origin of Dinosauria, may be well supported

through research time and under alternative phylogenetic

topologies, but could still be flawed if fossil record sam-

pling is highly heterogeneous. For example, if dinosaurs

actually originated in the late Middle to earliest Late Tri-

assic in Laurasia, and dispersed quickly across the globe,

they might still be reconstructed as ancestrally from South

Gondwana if that region is the only one from which ter-

restrial vertebrate fossils have been sampled in that time

interval. Reconstructions of ancestral areas for fossil taxa

should therefore always be considered within an explicit

consideration of how the fossil record has been sampled

spatially, and temporally, but this is rarely the case. Here,

we briefly discuss fossil record sampling through the

inferred origin and initial radiation of dinosaurs (Middle

F IG . 2 . Ancestral area reconstruction for the time-calibrated tree of the best biogeographical model of the ‘starting’ version of Baron

et al. (2017a, topology C) (DIVA M0). Pie charts depict the probabilities for ancestral areas of nodes. Rectangles next to the taxa indi-

cate their temporal range and the colours indicate their area.
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Triassic to early Late Triassic: Anisian–Carnian), and the

implications for the South Gondwana origins hypothesis.

The earliest dinosauromorph body fossils, as well as the

oldest putative dinosaur body fossil, are known from the

Middle to earliest Late Triassic of South Gondwana, most

notably from the Manda Beds of Tanzania (Nesbitt et al.

2010, 2013, 2017) and the Cha~nares Formation of Argentina

(Sereno & Arcucci 1994a, b; Bittencourt et al. 2015; Ezcurra

et al. 2017; Fig. 4). These represent two of the best-sampled

stratigraphic units for terrestrial tetrapods in this interval,

but Laurasian tetrapods of broadly comparable stratigraphic

ages are known from various Laurasian localities, including

the USA (Moenkopi Formation; Nesbitt 2005), the UK

(Helsby Sandstone Formation; Coram et al. in press), Russia

(Donguz and Bukobay gorizonts; Gower & Sennikov 2000),

Germany (Erfurt Formation; Schoch & Sues 2015) and

China (Ermaying Formation; Sookias et al. 2014). To date,

none of these Laurasian deposits have yielded dinosauro-

morph body fossils (Fig. 4).

Similarly, the earliest definitive dinosaur body fossils are

from the early Late Triassic (late Carnian) of Argentina and

Brazil (Alcober & Mart�ınez 2010; Brusatte et al. 2010;

Ezcurra 2010; Langer et al. 2010; Cabreira et al. 2011, 2016;

Mart�ınez et al. 2011; M€uller et al. 2018; Pretto et al. 2018)

(Fig. 4). Although the dating of many Laurasian rock

sequences of putatively similar age is controversial, those in

Germany (Butler et al. 2014), Poland (Dzik & Sulej 2007),

North America (Sues & Olsen 2015) and the UK (Benton &

Walker 1985) have failed thus far to yield definite dinosaur

remains, although the silesaurid Silesaurus is known from

Poland (Dzik 2003), and the problematic Saltopus from the

UK (Benton & Walker 2011).

Putative dinosauromorph footprint records have been

reported from the Early–Middle Triassic of Laurasia (Bru-

satte et al. 2011). These include the ichnogenus Proroto-

dactylus from the Olenekian of Poland (Brusatte et al.

2011; Nied�zwiedzki et al. 2013) and the ichnogenus Roto-

dactylus from the late Olenekian to Ladinian of Poland,

F IG . 3 . Ancestral area reconstruction for the time-calibrated tree of the best biogeographical model of the ‘starting’ version of Langer

et al. (2017) (DIVA M1). Pie charts depict the probabilities for ancestral areas of nodes. Rectangles next to the taxa indicate their tem-

poral range and the colours indicate their area.
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Germany, France, the UK and the USA (Peabody 1948;

Haubold 1999; Brusatte et al. 2011; Tresise & King

2012; Nied�zwiedzki et al. 2013). If this interpretation of

trackmaker affinities is correct, it represents a signifi-

cant challenge to our current understanding of the bio-

geography of early dinosauromorphs (although not

necessarily dinosaurs) suggesting that they were wide-

spread over northern Pangaea in the late Early to Mid-

dle Triassic. However, trackmaker affinities for footprint

ichnogenera are often difficult to constrain, and other

workers have challenged the identification of Proroto-

dactylus and Rotodactylus as dinosauromorphs (Padian

2013), suggesting that they could instead represent basal

archosauromorph or lepidosauromorph trackways.

In order to test the effects of the possible dinosauro-

morph affinities of the above-mentioned ichnogenera for

dinosauromorph and dinosaur biogeography, we per-

formed sensitivity analyses with Prorotodactylus added to

the Baron et al. (2017a: tree C) and Langer et al. (2017)

datasets (see Marsola et al. 2018). To do this, we consid-

ered two alternative possible scenarios where Proroto-

dactylus is sister-taxon to all other dinosauromorphs or is

sister-taxon to all lagerpetids. Invariably, the results (Mar-

sola et al. 2018, appendix S1) consistently continue to

infer South Gondwana as the ancestral area for both

Dinosauria and Dinosauriformes. On the other hand, a

joint distribution of South Gondwana and Euramerica as

the ancestral area for Dinosauromorpha is supported in

most cases, although some analyses also suggest a joint

distribution of Equatorial Belt and Euramerica.

It remains possible that, as suggested by Baron et al.

(2017b), better future sampling of Middle to early Late

Triassic localities from Laurasia will overturn the South

Gondwana hypothesis for dinosaur origins. However,

compared to those from South Gondwana, these areas

have been much more extensively sampled by palaeontol-

ogists for over 150 years and have so far failed to yield

body fossils of Middle Triassic dinosauromorphs or early

Late Triassic dinosaurs.

CONCLUSIONS

The last two decades have witnessed a great increase in the

taxonomic sampling of Triassic dinosaurs and non-dino-

saurian dinosauromorphs. Unearthed from different parts

of the world, these new discoveries have helped palaeontol-

ogists to better understand not only the morphology and

diversity of early dinosaurs, but also to develop new models

for their rise. Along with these new finds, new phylogenetic

hypotheses for early dinosaurs have been proposed. These

have challenged conventional understanding of the rela-

tionships of the main dinosaurian lineages (Cabreira et al.

2016; Baron et al. 2017a; Langer et al. 2017) and ques-

tioned the long-standing hypothesis of a southern Gond-

wanan origin for the clade (Baron et al. 2017a; Langer

et al. 2017). In this study, we have shown that even in the

most divergent phylogenetic hypotheses of early dinosaurs,

a southern Gondwanan origin is strongly supported by

quantitative biogeographical analyses. Additionally, we

have demonstrated that South Gondwana is consistently

supported as the ancestral area in a range of phylogenies

from the last 20 years, and has therefore been robust to

increases in taxonomic, geographical and phylogenetic

A B

F IG . 4 . Palaeogeographical distribution in continental deposits of non-dinosauromorph Tetrapoda, non-dinosaur Dinosauromorpha

and Dinosauria during the Middle Triassic/early Carnian (A) and late Carnian (B).
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sampling. Although Middle–Late Triassic rock sequences

worldwide have been sampled for decades, the oldest

unequivocal dinosaur body fossil remains are still clustered

in southern Gondwanan deposits. Given the present data,

the South Gondwana hypothesis must therefore be consid-

ered the best-supported interpretation of the ancestral area

for the rise of dinosaurs.
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