The Snake Fossil Record from Brazil

Author(s): Silvio Y. Onary, Thiago S. Fachini, and Annie S. Hsiou
Published By: The Society for the Study of Amphibians and Reptiles
https://doi.org/10.1670/16-031
URL: http://www.bioone.org/doi/full/10.1670/16-031
The Snake Fossil Record from Brazil

SILVIO Y. ONARY,1,2 THIAGO S. FACHINI,1 AND ANNIE S. HSIOU2,3

1Programa de Pós-graduação em Biologia Comparada, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
2Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
3Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil

ABSTRACT.—Brazilian fossil snakes have had a rich and diverse record since the Late Cretaceous. Here, we provide an overview of the snake fossil record from Brazil, gathering all available data to reconstruct the diversity and distribution of taxa through time. Mesozoic snakes are scarce, represented by the putative ophidian Tetrapodophis amplectus, the snake Seismophis septentrionalis, and some undescribed material referred to ‘Anilioidea.’ The Paleocene of São José do Itaboraí holds the richest and most-diverse Brazilian snake fauna composed of several taxa of madtsoids, ‘aniloids,’ booids, ‘booids,’ and caenophidians. Fossils from the Brazilian Neogene are reported for the Late Miocene of the Solimões Formation including booids, Colubroids, and an alethinophidian of uncertain relationships, Colombophis. Quaternary deposits yield a rich snake fauna represented by extant species such as booids and colubroids. The Brazilian snake fossil record is crucial for understanding issues about the early evolution of snakes and provides valuable insights into paleobiogeography, paleoenvironmental, and morphological studies.

RESULT AND DISCUSSION

South America is a crucial region for understanding the origin and early evolution of snakes in Gondwana, with a rich fossil record of stem and extant taxa distributed in several localities with a well-studied and revised literature (Apesteguía and Zaher, 2006; Albino and Brizuela, 2014; Hsiou et al., 2014). In this context, Brazil has an extensive snake fossil record from the Cretaceous (Hsiou et al., 2014; Martill et al., 2015) through the Pleistocene-Holocene, although compared to the modern fauna it still is poorly known. Here we provide an overview of the snake fossil record in Brazil, attempting to gather all the current available data to reconstruct the distribution and diversity of Brazilian fossil snakes through geological time.

Squamata constitutes the most diversified clade of reptiles today, including nearly 10,000 living species, with snakes representing almost one-third of this diversity (~3,567 spp.) (Uetz and Hošek, 2016). Besides the distribution and diversity of extant snakes, the fossil record is an important key to understanding their biogeography and evolution (Albino, 2011a). Recovered snake remains usually are vertebrae or small skull fragments but rarely complete articulated skeletons (Albino, 2011a). This pattern is because of the nature of the squamate skeleton, which generally is gracile and relatively small, requiring a suitable depositional environment for exceptional preservation (Evans, 2003). The fossil record of snakes usually comes from microvertebrate deposits like ponds, fissures, and cave fillings, but these are often disarticulated or broken remains, complicating the taxonomic assignment of the specimens and in many cases preventing further phylogenetic studies (Evans, 2003).

The Snake Fossil Record from Brazil

SILVIO Y. ONARY,1,2 THIAGO S. FACHINI,1 AND ANNIE S. HSIOU2,3

1Programa de Pós-graduação em Biologia Comparada, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
2Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
3Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil

ABSTRACT.—Brazilian fossil snakes have had a rich and diverse record since the Late Cretaceous. Here, we provide an overview of the snake fossil record from Brazil, gathering all available data to reconstruct the diversity and distribution of taxa through time. Mesozoic snakes are scarce, represented by the putative ophidian Tetrapodophis amplectus, the snake Seismophis septentrionalis, and some undescribed material referred to ‘Anilioidea.’ The Paleocene of São José do Itaboraí holds the richest and most-diverse Brazilian snake fauna composed of several taxa of madtsoids, ‘aniloids,’ booids, ‘booids,’ and caenophidians. Fossils from the Brazilian Neogene are reported for the Late Miocene of the Solimões Formation including booids, Colubroids, and an alethinophidian of uncertain relationships, Colombophis. Quaternary deposits yield a rich snake fauna represented by extant species such as booids and colubroids. The Brazilian snake fossil record is crucial for understanding issues about the early evolution of snakes and provides valuable insights into paleobiogeography, paleoenvironmental, and morphological studies.

RESULT AND DISCUSSION

South America is a crucial region for understanding the origin and early evolution of snakes in Gondwana, with a rich fossil record of stem and extant taxa distributed in several localities with a well-studied and revised literature (Apesteguía and Zaher, 2006; Albino and Brizuela, 2014; Hsiou et al., 2014). In this context, Brazil has an extensive snake fossil record from the Cretaceous (Hsiou et al., 2014; Martill et al., 2015) through the Pleistocene-Holocene, although compared to the modern fauna it still is poorly known. Here we provide an overview of the snake fossil record in Brazil, attempting to gather all the current available data to reconstruct the distribution and diversity of Brazilian fossil snakes through geological time.

Squamata constitutes the most diversified clade of reptiles today, including nearly 10,000 living species, with snakes representing almost one-third of this diversity (~3,567 spp.) (Uetz and Hošek, 2016). Besides the distribution and diversity of extant snakes, the fossil record is an important key to understanding their biogeography and evolution (Albino, 2011a). Recovered snake remains usually are vertebrae or small skull fragments but rarely complete articulated skeletons (Albino, 2011a). This pattern is because of the nature of the squamate skeleton, which generally is gracile and relatively small, requiring a suitable depositional environment for exceptional preservation (Evans, 2003). The fossil record of snakes usually comes from microvertebrate deposits like ponds, fissures, and cave fillings, but these are often disarticulated or broken remains, complicating the taxonomic assignment of the specimens and in many cases preventing further phylogenetic studies (Evans, 2003).

The Australian fossil record is also well documented, with a rich diversity of fossil snakes from the Late Cretaceous to the Quaternary. However, the record is still incomplete, and further research is needed to understand the paleobiodiversity of Australian snakes. The fossil record of Australian snakes provides valuable insights into the evolution and biogeography of snakes, especially for understanding the origin of the modern fauna and the diversification of the Squamata clade.
ophidians. In the phylogenetic analysis performed by Martill et al. (2015), *T. amplectus* emerges as an ophidian sister-group to the North American Cretaceous snake *Coniophis precedens* (Longrich et al., 2012), considered a burrowing fossil snake. This topology strongly suggests a fossorial origin for crown snakes (Tchernov et al., 2000; Apesteguía and Zaher, 2006; Longrich et al., 2012) rather than the alternate marine hypothesis (Caldwell and Lee, 1997; also see Palci et al., 2013). Alternatively, some current studies appointed counter morphological and systematics observations in comparison to the original description, suggesting an alternative interpretation of the specimen, criticizing the proposed affinity (Lee et al., 2016; Caldwell et al., 2016). Some characters, such as enlarged first metapodials, reduced tarsal/carpal ossification, weak girdles, high caudal vertebral count number, long skull, and the absence of intramandibular joint and snake-like teeth, are shared between *Tetrapodophis* and a variety of marine reptiles which possibly approximate the Brazilian fossil with aquatic squamates such as mosasauroids and dolichosaurs (Lee et al., 2016; Caldwell et al., 2016).

Indeed, the evolution of limblessness in tetrapods is a peculiar episode because of its multiple origins (Caldwell, 2003; Brandley et al., 2008; Evans, 2015) and several reversions through the evolution of the group (Cohn and Tickle, 1999; Caldwell, 2003; Brandley et al., 2008; Evans, 2015). Among squamates, trunk elongation often is associated with limb loss, strongly suggesting a linked developmental mechanism (Carroll, 1988; Cohn and Tickle, 1999; Caldwell, 2003). There is a clear threshold between body elongation and limb growth, with no four-limbed modern squamate having more than 70 precloacal vertebrae (Caldwell, 2003; Brandley et al., 2008). This threshold is potentially broken in the *Tetrapodophis* case, as it retains four functional limbs with more than 150 precloacal vertebrae (Caldwell, 2003; Brandley et al., 2008).

This threshold is potentially broken in the *Tetrapodophis* case, as it retains four functional limbs with more than 150 precloacal vertebrae (Martill et al., 2015; Caldwell et al., 2016). The occurrence of a truly four-limbed snake (e.g., a specimen with Ophidia autapomorphies) in Gondwana possibly sheds light on the origins, ancient lifestyle, and biogeography of stem ophidians; however, the assignment of *Tetrapodophis* as a snake is dubious. Several lineages of squamates have suffered transitions from a lizard-like to snake-like body along their evolution.
evolutionary history (e.g., dibamids, pygopodids, amphisbaenians, the Cretaceous hind-limbed snake taxa), evidencing the plasticity and the homoplasy degree of these morphological traits such as the elongated trunk body and the presence or absence of limbs (Caldwell, 2003; Brandley et al., 2008). The presence of these intermediate morphologies (e.g., limbless lizards or limbless snakes) is widespread phylogenetically during the evolutionary story of the group, even persisting in crown squamates (Caldwell, 2003; Apesteguía and Zaher, 2006; Brandley et al., 2008; Caldwell et al., 2015). This fact, together with the current reanalysis studies (Lee et al., 2016; Caldwell et al., 2016), hampers a precise assignment of Tetrapodophis as a snake. Additionally, evo-devo and palaeontological data strongly propose an intrinsic mechanism between the Hox gene expression and regulation pattern to the expansion of the thoracic identity (Cohn and Tickle, 1999; Caldwell, 2003). Generally, this interaction results on the absence of forelimbs together with the axial trunk elongation on the development of the snake-like body plan, although this issue is still in a constant discussion (Cohn and Tickle, 1999; Head and Polly, 2015; Aires et al., 2016; Guerreiro et al., 2016).

In this sense, Tetrapodophis can really represent a snake fossil; however, in the present moment we prefer to recognize it as a putative ophidian. Only additional robust morphological reappraisal of the specimen can help to elucidate the systematic affinities of the fossil and avoid misinterpretation. In this case, a comprehensive anatomical description of the specimen is required because the set of derived characters appointed by Martill et al. (2015) as snake autapomorphies are somewhat questionable and the specimen was poorly described. Additional tools and methodologies, such as micro-tomography scan images and a robust phylogenetic reanalysis, can elucidate the systematics of this enigmatic fossil.

Another pertinent question concerning Tetrapodophis is about the obscure provenance and acquisition of the specimen. The authors do not provide a precise origin of the fossil, comparing the sediments of the rock matrix to infer the provenance from Crato Formation (see Martill et al., 2015; Supplementary Data). In addition to this case, innumerable other occurrences involving fossil trafficking from the Crato Formation were reported. Under the legislation of Brazil, federal laws protect the mineralogical materials (including fossils), and prospection without permission is considered a crime. Due to the problematic scenario, as members of Sociedade Brasileira de Paleontologia (Brazilian Society of Paleontology), here we reaffirm and draw attention to the issue about fossil trafficking in Brazil (see Langer et al., 2012).

An important and unquestionable Mesozoic snake is Seismophis septentrionalis (Hsiou et al., 2014), described from vertebral remains (Fig. 2A). It holds a unique combination of vertebral characters that distinguishes it from any known extant or extinct taxa (Hsiou et al., 2014). The fossil comes from Falésia do Sismito, Cujal Island, Maranhão, northeastern Brazil (Cenomanian, Early Late Cretaceous) (Fig. 1B).

The systematic affinities of Seismophis are still uncertain because of the poor preservation of the fossils and the limited phylogenetic information based only on vertebrae. The specimens retain a set of plesiomorphic characters such as the higher level of inclination of the prezygapophysis, the absence of a prezygapophyseal process, and the shallow posterodorsal notch. These plesiomorphic conditions are shared between the Brazilian fossil, the hind-limbed Najash, and the Patagonian snake Dinilysia (Rage and Albino, 1989; Zaher et al., 2009a; Hsiou et al., 2014). In spite of these primitive conditions, Seismophis also shows derived conditions such as the presence of paired parazygantal foramina (seen in Madtsoiidae; Lee and Scanlon, 2002; Wilson et al., 2010) and the presence of parazygaltal ridges that strongly resemble the laminar crest present in boids such as Boa, Eunectes, and Chubutophis (Albino, 2011b; Hsiou et al., 2014; Onary-Alves et al., 2016). Even with its phylogenetic affinities not defined, the combination of derived and plesiomorphic conditions on this taxon makes the fossil an interesting taxon to be investigated to interpret the early snake evolution, especially when compared with the Argentinean Cretaceous snake taxa (Hsiou et al., 2014).

The Late Cretaceous (Turonian-Santonian) Adamantina Formation, Bauru Group, contains records of snake vertebrae from several localities in São Paulo State, but the materials are still undescribed. Bertini and Bonfim-Júnior (1998) briefly reported the occurrence of isolated vertebra attributed to an indeterminate snake from the Adamantina Formation, São Paulo, unknown site (Fig. 1C). In General Salgado, Zaher et al. (2003) reported the presence of articulated midtrunk vertebrae attributed to an indeterminate ‘Anilioidae’ based on vertebral morphology (Fig. 1D). The material reportedly can represent a new taxon, differing from previous described fossils and extant taxa; however, it is still undescribed. Later, Fachini and Iori (2009) followed by Fachini and Hsiou (2011) provided the first record of an ‘anilioid’ snake for the Monte Alto region (Fig. 1E). Morphological features are similar to those of the material reported by Zaher et al. (2003) and, likewise, remain undescribed.

The Rich and Diverse Paleogene Snake Fauna.—The Paleogene of Brazil has a rich and diverse snake fauna restricted to the Paleocene of São José do Itaboraí, Rio de Janeiro (Rage, 1998, 2001, 2008). These remains come from different fissure fillings that unfortunately have confused the age of the deposits. There is temporal reworking and no record of the provenance of each specimen. Some authors consider the locality as Middle Paleocene (Muizon and Brito, 1993; Rage, 1998) with only minor variation in age (Van Valen, 1988); however, others authors suggest Early Eocene age (Gayet et al., 1991; Gelfo et al., 2009). Here we adopt the position of Rage (1998), accepting a Middle Paleocene age for the São José do Itaboraí deposits.

Itaboraí represents the most diverse deposit with fossil squamates in South America (Carvalho, 2001). Regarding the snake record, Madtsoiidae, ‘Aniliidae’, Boidae, ‘booids,’ and a single caenophidian were recorded (Albino, 1990; Rage, 1998, 2001, 2008).

Madtsoiidae represents an extinct family of snakes known from the Late Cretaceous to the Pleistocene (Scanlon and Lee, 2000). The only genus recorded in the Brazilian Paleocene is Madtsoia, represented by a single species: M. camposi (Fig. 2B, 3A) (Rage, 1998). Within the worldwide diversity of Madtsoiidae, M. camposi retains a unique combination of vertebral features that, together with the mandibular traits, support the validity of this taxon (Rage, 1998). Although phylogenies based only on vertebral features are unusual, Madtsoiidae is considered a monophyletic group and M. camposi belongs to a clade with medium-to-large taxa, together with the Australian Wombi and Yulungur, the European Gigantophis and Menarana, and the Indian Sanajeh (for systematic review see Vasile et al., 2013:fig. 5A,B).
Traditionally, ‘Anilioidae’ is considered a clade sister group to all Macrostomata (Rage, 1984; Lee and Scanlon, 2002). Some studies support the group as a clade (Rieppel, 1988; Kluge, 1991), but current analyses accept them as paraphyletic (Tchernov et al., 2000; Lee and Scanlon, 2002; Reeder et al., 2015). The Paleocene of São José de Itaboraí bears two snakes initially attributed to ‘Aniliidae’: Coniophis cf. C. precedens (Fig. 3B) and Hoffstetterella brasiliensis (Albino, 1990; Rage, 1998) (Fig. 3C). Both taxa display the overall vertebral morphology that allows their assignment to ‘Aniliidae,’ but these are symplesiomorphic characters that hamper a precise diagnosis for the group (Rage, 1998).

Fig. 2. Main fossil snakes species from Brazil showing the typical preservation found in the country, isolated precloacal vertebrae. (A) Seismophis septentrionalis; (B) schematic drawing of Madtsoia camposi (modified from Rage, 1988); (C) schematic drawing of Hoffstetterella brasiliensis (modified from Rage, 1988); (D) Colombophis spinosus (modified from Hsiou et al., 2010); and (E) Colombophis portai (modified from Hsiou et al., 2010). In (1) anterior; (2) posterior; (3) lateral; (4) ventral; and (5) dorsal views.
The Brazilian specimens of *Coniophis* show a vertebral morphology similar to the North American species, but no autapomorphic features support the assignment of the fossil to the species *C. precedens* (Rage, 1998). Additionally, Longrich et al. (2012), based on new fossils attributed to the genus (with skull elements), proposes a phylogenetic hypothesis that recognized the genus *Coniophis* as a stem-snake. This fact made unclear the placement of the genus within ‘Aniliidae’ which consequently affected the taxonomic identity of the Brazilian putative *Coniophis cf. C. precedens*.

The single record of ‘Aniliidae’ from the Middle Paleocene of São José do Itaboraí is *Hoffstetterella brasiliensis* (Fig. 2C) (Rage, 1998). The specimen consists of vertebral remains with the typical ‘anilioid’ morphology. Nevertheless, diagnostic features make it divergent from all known fossil and extant species (Rage, 1998). The dubious phylogenetic relations of ‘Aniliidae,’ especially regarding the fossil taxa, make inferring the systematic position of *H. brasiliensis* difficult. Accordingly, a review of all *Hoffstetterella* material has potential to show unexpected results, as in the cases of *Coniophis* (Longrich et al., 2012) and *Colombophis* (Hsiou et al., 2010).

The Paleocene of São José do Itaboraí has a rich boid fossil record that can help unravel questions about morphology, systematics, and paleobiogeography of the group. Almost all specimens belong to the subfamily Boinae (sensu Kluge, 1991; Rage, 2001), but *Hechtophis austrinus* (Fig. 3D–E) was initially attributed to Erycinae (Rage, 2001). Usually, the assignment to this subfamily is based on postcloacal vertebral features such as short additional processes and a thickened neural spine.
with expanded tips (Hofstetter and Rage, 1972). The marked shortness of the specimens, together with the absence of additional diagnostic traits on the postcloacal vertebrae, led Rage (2001) to assign the species to Erycinae. Yet, a subsequent reappraisal of the holotype and comparisons with the extant genus *Epicrates* showed that the relation of *Hechtophis* is controversial, as the genus shares features with *Epicrates* and no characteristic appears to be exclusive. Accordingly, *H. austrinus* was attributed to Boidae incertae sedis (Rage, 2008).

As for the Boinae remains, there are five or six described species including the extant genus *Corallus* (Rage, 2001). Its record in the Middle Paleocene of São José do Itaboraí is considered the oldest for an extant boid (Head, 2015). Although the fossil shows the morphology of *Corallus*, it has sufficient autapomorphies to be considered a species distinct from all

![Distribution of the Quaternary snakes.](image-url)
extant forms and was described as *Corallus priscus* (Rage, 2001) (Fig. 3F–G). This early Paleogene Brazilian taxon is a crucial component of evolutionary studies of Neotropical boines, as its occurrence constrains the divergence of the clade at ± 50 million years (Ma) (Head, 2015).

The genus *Waincophis* was attributed to Boinae based on the overall morphology (Rage, 2001), although there is no formal phylogenetic study of the taxon. The material attributed to *Waincophis* is diverse and abundant, comprising two species (*W. pressulus* and *W. cameratus*), plus additional material tentatively attributed to the latter species (Rage, 2001) (Fig. 3H–L). The systematic relation of *Waincophis* is still unclear, but Rage (2001) reviewed its vertebral morphology and proposed a Boinae affinity. The proposal has little support but still is followed by some authors (Hsiou et al., 2010).

Indeterminate boines also are known from the São José do Itaborá deposits but, in the absence of additional vertebral information, were not assigned to a given Boinae genus and species (Boinae A and Boinae B; Fig. 3M–N) (Rage, 2001). These fossils bear features that distinguish them at the specific level from all other boines from Itaborá, but the low number of specimens prevents a certain identification (Rage, 2001). Finally, another indeterminate boine (Fig. 3O) was described based on dentary material, but the lack of diagnostic features hampers refining its taxonomic identity (Rage, 2001).

The “advanced snakes,” a group of macrostomatans with dubious relationships that comprise ungaliphines, ‘tropidophiids’, boleyerines, and caenophidians (sensu Kluge, 1991; Lee and Scanlon, 2002), are represented in São José do Itaborá by *Paraungaliophis pricei* (Fig. 3P–Q) described from vertebral materials (Rage, 2008). The snakes *Itaboraiophis depressus* (Fig. 3R) and *Paulacoutophis perplexus* (Fig. 3S) also represent advanced snakes (=Boooids-grade, sensu Rage, 2008), but these are of non-ungaliophiinae advanced snakes as the vertebrae retain ‘booid’ features (sensu Rage, 2008). Yet, the absence of ungaliphine/’tropidophiid’ characters (Rage, 2008) allowed the allocation of these taxa as Boooid-grade incertae sedis, representing Middle Paleocene boines of uncertain affinities (Rage, 2008).
(Fig. 2C–D). Colombophis was originally described from Colombophis portai, from the Middle Miocene of Colombia, and allocated into the ‘Aniliidae’ (Hoffsteter and Rage, 1977; Hecht and LaDuke, 1997). This review identified the presence of C. portai (Fig. 3A) as well as a second species of Colombophis, C. spinosus (Fig. 3B), also showing morphological evidence that recognizes this genus as alethinophidian of uncertain affinity. According to Hsiou et al. (2010), C. spinosus shares vertebral features with the stem-snake Dinylysia pagonica (Albino and Caldwell, 2003), suggesting a semiburrowing or semiaquatic lifestyle, shedding light on the paleoenvironmental interpretation of the Solimões Formation (Hsiou et al., 2010). It studied under a more nesting systematics approach, this taxon could help understand alethinophidian evolution.

Boines comprise three taxa from the Late Miocene of southwestern Brazilian Amazonia: aff. Epicrates, Waincophis sp., and Eunectes sp. (Fig. 3C–E) (Hsiou and Albino, 2009, 2010). The presence of aff. Epicrates in the Late Miocene of Solimões Formation could represent the earliest record of the genus, corroborating molecular studies that estimated the origins of the clade in the Early Miocene or before (Noonan and Chippindale, 2006).

Hsiou and Albino (2010) described two indeterminate ‘Colubridae’ based on isolated vertebral material (Fig. 3F–G). A major problem within the systematics of Colubroidea (sensu Zaher et al., 2009b) is the absence of postcranial synapomorphies and the lack of diagnostic vertebral features among ‘Colubridae’ (Zaher, 1999), hampering the precise taxonomic assignment of ‘colubrid’ fossils. The Solimões Formation material shares a typical ‘colubrid’ vertebral morphology, but only an extensive comparative study can refine the taxonomic status of these specimens.

Overview of Quaternary Fossil Snakes.—The Brazilian Quaternary fossil record of snakes is rich and diverse and mainly registered in karstic systems (Fig. 4). Camolez and Zaher (2010; Hsiou and Albino, 2011; Hsiou et al., 2012, 2013). An extensive work of Camolez and Zaher (2010) dealt with most of the recovered fossils represented by boines, viperids, elapids, and ‘colubrids.’ Other additional reports complement the survey (Hsiou and Albino, 2011; Hsiou et al., 2012, 2013). These specimens represent mainly extant species identified from fragmentary vertebrae and/or cranial remains and often associated with archaeological sites.

The Quaternary Boinae record comprises four current Neotropical genera: Eunectes, Boa, Corallus, and Epicrates (Camolez and Zaher, 2010; Hsiou and Albino, 2011; Hsiou et al., 2012, 2013). On other hand, several Colubroidea (sensu Zaher et al., 2009b) were discovered in Pleistocene gravels, and the materials are well diversified including the groups Colubroidea, Elapoidae, and Viperidae (sensu Zaher et al., 2009b).

Among Colubroidea, several specimens of Colubridae (sensu Zaher et al., 2009b) were recovered such as Chironius sp., Tantilla sp., cf. Pseustes sulphureus, and cf. Mastigodryas bifossatus (Camolez and Zaher, 2010). Dipsadidae is represented by Helicops laurinius, cf. Philodryas, and indeterminate vertebral remains attributed to Pseudoboini, Xenodontinae, and Dipsadinae (Camolez and Zaher, 2010).

The fossil record of Elapidae is restricted to Elapidae and represented by the species Micrurus corallinus and an isolated midtrunk vertebra of Micrurus sp. (Camolez and Zaher, 2010). Finally, Viperidae is recorded based on some vertebral remains attributed to Bothrops sp. and Crotalus durissus (Camolez and Zaher, 2010; Hsiou et al., 2012), with only a single record of an indeterminate Viperidae from the late Pleistocene of the Amazon (Hsiou and Albino, 2011).

The presence of fossil snakes on karstic systems is related to the propitious environment for fossilization, once these sites represent true “natural traps.” Additionally, the great diversity of Quaternary Colubroides remains consistent with the fossil record, showing the decline of boids since the Oligocene, followed by the diversification of Colubroides starting in the Miocene (Albino and Montalvo, 2006) and reaching the apex in the Neogene/Quaternary (Rage, 1998).

Conclusions

This overview compiles the main occurrences of fossil snakes in Brazil (Fig. 5). The presence of stem taxa is important to understand questions about snake origins in Gondwana; however, the assignment of Tetrapodophis as a snake remains uncertain because of the poor morphological understanding of the specimen. The richness and abundance of snakes in Paleogene sites bring morphological data that can help understand snake evolution. Neogene deposits provide a valuable fossil record for understanding paleoenvironmental changes, especially regarding the ancient territory of the Amazon rainforest. Fossils of extinct snakes can help in understanding the presence and its implications of alethinophidians of uncertain relationships in the late Miocene of Amazonia. Quaternary deposits yield rich records of the modern fauna that can give insights about the current diversity of snakes and about paleoenvironmental changes during the Pleistocene-Holocene boundary. Despite these records, the snake fauna of Brazil retains three major temporal gaps corresponding to the Eocene, Oligocene, and Pliocene (Fig. 5). Most of the fossil snake record is biased by the nature of the preservation, thus hampering precise phylogenetic inferences. Yet, they are valuable to better understand the biogeography, paleoenvironment, and morphology of fossil snakes and also can provide phylogenetic interpretations.

Acknowledgments.—We thank the Brazilian agencies Fundação de Amparo à Pesquisa do Estado de São Paulo (grant to ASH, FAPESP Process n. 2011/14080-0) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (grant to SYOA and TSF, CAPES Master Science Fellowship) for their financial support. We are deeply grateful to the reviewer M.W. Caldwell and the anonymous reviewer 2 for their valuable insights and help to improve the manuscript, to M.C. Langer (FFCLRP/USP), F. Burbrink (AMNH) for critical reading, suggestions, and language revision of the early version of the manuscript, and to the associate editor and co-editor (T. Doan) of the Journal of Herpetology who helped us in the submission and revision process. Our special thanks to T. Simões (University of Alberta, Canada) and S. Apesteguía (Universidade Maimônicas, Argentina) for the invitation to contribute to this special issue of the Journal of Herpetology.

Literature Cited


ALBINO, A. M. 1990. Las serpientes de São José de Itaborai (Edad Itaboraiense, Paleocenomedio), Brasil. Ameghianiana 27:337–342. [In Spanish.]